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Abstract 

A method is described using nonlinear equations for 
geometric characterization of triangular surface linear 
crack patterns in silicon crystals. The proposed 
equations are solved by an iterative method with 
several variables. The angle between the surface plane 
and the (111) crystallographic plane of a silicon wafer 
is determined from an equation that is a linear combi- 
nation of the cosines of the angles between the surface 
plane and the (111), ( l i l )  and (1 IT) crystallographic 
planes. These three unknown angles are the solutions 
of a nonlinear system of equations dependent on the 
angles between the directions of linear cracks on the 
surface plane of the wafer. The method was applied 
to a silicon wafer and the result compares favourably 
with the orientation obtained by X-ray diffraction. 

Introduction 

It is well known that the irradiation of a planar surface 
of a silicon crystal with a laser beam having a par- 
ticular value of intensity and frequency brings about 
a modification of the surface structure. The surface 
contains a lattice of linear microchannels which are 
called 'linear crack patterns'. From the work of Tan, 
Ng & Ong (1984) and Demchuk, Pristrem, Danilovich 
& Labunov (1987) it is clear that these linear crack 
patterns (LCP) appear along the crystallographic 
planes that have the closest-packed atoms. 

In his work Fong (1973a, b, 1986) gives an analyti- 
cal method of determining cubic-crystal orientations 
from (111) surface traces and describes other methods 
and their inconveniences. The method proposed by 
Fong considers the angles between the first three trace 
directions and solves a fourth-degree polynomial 
equation. From these solutions are derived other 
intermediate quantities. This process of deduction of 
intermediate quantities is iterated many times. Fong 
(1986) also describes the possibilities of obtaining the 
crystal orientation from three or four surface-crack 
directions. 

In their work, Hoekstra, Ohm & Verbraak (1978) 
give three equations for twins in the austenitic phase 
of bainitic steel Ni35Cr18 dependent on three 
measurement quantities and two unknowns. The two 
unknowns are the angle between a rotation axis AB 
and the projection of the [111] unit vector on the 
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(111) plane and a particular angle of rotation around 
the AB axis. They concluded that there are many 
solutions, depending on the angle between the twin 
intersection. 

In the present work a method using nonlinear 
equations is reported. The system of nonlinear 
equations contains the orientation parameters as 
unknowns, without intermediate quantities. The sol- 
utions are obtained with a numerical method 
described by Drhgoi (1992). An initial approximate 
solution is however, required. Also in this paper are 
reported a theoretical test and an experimental 
example for analysis of a triangular LCP. A com- 
parison with the X-ray diffraction method is given. 

Formation LCP and measurements 

The formation of a LCP with a triangular form has 
been observed by the action of a single pulse of a 
ruby laser (installed on a laser microanalyser LMA-10 
produced in Germany) on a target of single-crystal 
silicon wafer. The silicon wafer has a misorientation 
in the [111] direction. 

The LCPs were examined with the optical micro- 
scope of the LMA-10 and the image was photo- 
graphed (Fig. 1 a). The total magnification of the LCP 
image presented is 2200 times. 

The misorientation of the silicon wafer was deter- 
mined by the X-ray method described in ASTM F26- 
84 (1984). The value of the misorientation was 1.156 °. 

The angles between the directions of the LCP are 
measured by a conventional method. For the triangle 
indicated in Fig. l(b) the two angles of interest are 
59.3 and 60.5 ° . These values give information about 
the crystallographic orientation of the wafer. The 
relationship of these two values to the orientation 
parameters is given in the next section. 

Angular relations of LCPs 

With the method of extended stereographic projec- 
tion (which projects more points beyond both sides 
of the equatorial circle) and the { 111 } planes projected 
onto the plane of the wafer, it is easy to find the 
projected spherical triangles containing two angles 
such as A and B, B and C or C and A. A, B, C are 
the angles between the surface plane of the wafer and 
the (111), ( l i l )  and ( l l i )  planes, respectively. The 
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first system of  equat ions for a t r iangular  LCP can be 
derived applying the cosine theorem: 

X12 X23 X31 
cos xt2 = (~+ cos A cos B) / ( s in  A sin B), (1) 60.0oo0 60.0000 60.0000 

60.0094 60.5256 59.4649 
then two similar formulae  are obta ined from (1) by 60.0201 60.5205 59.4594 
the permuta t ions  60.0378 61.0419 58.9203 

60.0592 61.0322 58.9087 
1 --) 2 --) 3 -~ 1 60.0851 61.5488 58.3661 

60.1171 61.5351 58.3478 
60.1514 62.0465 57.802 i 

A -~ B --) C ~ A, 60.1941 62.0294 57.7765 

where the arabic  numerals  1, 2 and 3 designate three 

( a )  
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(b) 

Fig. 1. ( a )  Tr iangu la r  L C P  ob ta ined  on a target  o f  si l icon wafer  
with a single pulse o f  a ruby  laser;  (b)  scheme  o f  ( a )  with the 
defini t ion o f  the elements .  

Table 1. Test results for equations (1) and (2) 

e 
3O 0 
3O 1 
31 1 
3O 2 
31 2 
3O 3 
31 3 
3O 4 
31 4 

different direct ions of  lines of  the LCP. x12 , x23 and 
x3~ are the angles between the pairs of  straight lines 
1 and 2, 2 and  3 and 3 and 1, respectively (Fig. lb) .  

The extended s tereographic  project ion of  the { 111 } 
planes on the (111) plane reveals the known symmetry  
of  the 120 ° rotat ion a round  an axis perpendicular  to 
the (111) plane and from their  spherical  triangles it 
is easy to derive the second group of  equations,  the 
parametr ic  equat ions,  

cos A =~[cos e+2x21/2sin e cos fl]. (2) 

Two formulae are obta ined  from (2) by the permuta-  
tions 

A"* B ~ C  

fl --* (fl + 120) --* (fl - 120), 

where e is the angle between the (111) plane and the 
surface plane of  the wafer and fl is the angle between 
one of  the crysta l lographic  directions,  (110), and the 
line obta ined from the intersect ion of  the (111) plane 
with the surface plane of  the wafer. 

The first system of  equat ions  (1) represents the 
basic relations for determining crystal orientat ions 
from the t r iangular  LCP. If  one gives values to the 
parameters  (e, O), it is easy to compute  the measure- 
ment  parameters  (x~2, x23). In Table 1 the results of  
a test of  (1) and (2) are given, using for e and fl the 
intervals (0, 4) and (30, 31), respectively. 

Table 1 shows that  (1) and (2) are satisfactorily 
checked for nine par t icular  values of  e and ft. The 
s u m  xi2-Jcx23-~x31 is equal  to 180 ° for all the pairs 
(e, fl), since it is the sum of  the angles of  a triangle. 

With knowledge,  instead,  of  the pairs of  angles 
(X12,X23) as exper imental  values, (1) leads to sol- 
utions for the unknowns  A, B and C. These solutions 
can be obta ined by applying a numerical  method,  for 
example  the Newton  method,  for solving a nonl inear  
system of three equat ions.  

From (2), with A, B and  C determined,  it is easy 
to determine the or ienta t ion parameters  e and ft. 

The direct expressions for e and fl in terms of  A, 
B and C are 

cos e = cos A + cos B + cos C (3) 

cos fl = 2-3/2(2 cos A -  cos B -  cos C)  

x [1 - ( c o s  A + c o s  B + c o s  C)2] -1/2. (4) 
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In the following section an example is given of the 
use of these LCP equations. 

Use of LCP equations 

In the works of Tan et al. (1984) and Demchuk et al. 
(1987), the crack patterns are presented in the (100) 
and (111) planes. In the present work these patterns 
are presented in a plane inclined from the (111) 
crystallographic plane. The procedure for solving the 
nonlinear equations from (1) was developed in the 
work of Dr~goi (1992). 

The system of nonlinear equations may be solved 
by two methods: the direct and reverse methods. The 
direct method uses the values e and/3 as independent 
variables, generating the values x12, x23 in Table 1, 
but with enough values and precision to fit the experi- 
mental data. The reverse method solves (1), using the 
Newton method as described by Kantorovich & 
Akilov (1977). 

According to the Newton method the procedure 
for solving (1) is the same as that used by Dr~goi 
(1992) for two equations. The initial value for the 
start of the iterations was chosen to be A -- B = C = 
70 ° and the condition for interrupting the computing 
process was the difference between two iterative sol- 
utions, Z A ,  Z B  and Z C  corresponding to the sol- 
utions A, B and C, being smaller than a given positive 
quantity ( - 1 0  -4, denoted by EPS in Fig. 2). In Fig. 
2, EPS fixes the precision of all solutions A, B and 
C by a single condition. The condition given can be 
considered equivalent to the separate conditions 
abs ( Z A )  < ½EPS, abs ( Z B )  < ½EPS, abs ( Z C )  < ½EPS. 
In Fig. 2, P is a column matrix of three functions 
associated with (1). For example, the first element 
of P is the function F I ( A ,  B, C ) = c o s x ~ 2 s i n A x  

( START ) 
I 

[ READ DATA: A °, B,°C, °1, P I 

I 
COMPUTE: 1 ZA=(I"P) ,, A=A °ZA 

ZB=(I"P)2, B=B °ZB 
ZC=(I"P) 3, C=C °-ZC 

Fig. 2. Schematic diagram for solving LCP equations. 

sin B - c o s  A cos B - ~ .  The next elements will be 
F2(A, B, C) and F3(A, B, C) which can be obtained 
from F I ( A ,  B, C)  by the permutation given for (1). 
I is the 3 x 3 Jacobian matrix of functions presented 
like the elements of matrix P. I - l  is the inverse matrix 
of L The quantities ( I -1P)I  , ( I - IP)2  and ( l - lP )3  are 
the first, second and third elements of (3 x 1) column 
matrix 1-1P. 

These initial solutions, arbitrarily chosen, were 
tested and found to be valid not only for misorienta- 
tion but for high angles of e, like the angles between 
crystallographic planes in a crystal with cubic 
structure. 

The theoretical test given in Table 1 was checked 
satisfactorily using the Newton method. For example, 
using the values xl2 = 60.0851, x23 = 61.5488 and solv- 
ing (1), (2) give e = 3 and/3 = 30, consistent with the 
values in Table 1. All the numerical values are 
expressed in degrees. 

An experimental test was also performed. Measur- 
ing the angles X~z=59.3 and X23=60.5 from the 
photograph (Fig. l a) by a conventional method and 
applying the Newton method, one finds the value for 
e to be 1.162 °. This value is in good agreement with 
e = 1.56 ° measured by the X-ray diffraction method 
described in ASTM F26-84 (1984). The value of /3  
was ignored in this experiment as it was not required. 

Concluding remarks 

The groups of nonlinear equations presented make 
possible the determination of the crystallographic 
orientation of a silicon wafer near a (111) orientation 
from the form of crack patterns on the wafer surface 
produced by a laser-beam pulse. 

The accuracy of the obtained orientation is compar- 
able to that achieved by X-ray diffraction. 

The method described may possibly be extended 
to other materials such as GaAs and CdTe. 
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